首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200298篇
  免费   18790篇
  国内免费   9777篇
工业技术   228865篇
  2024年   435篇
  2023年   3541篇
  2022年   6024篇
  2021年   9026篇
  2020年   7033篇
  2019年   5593篇
  2018年   6354篇
  2017年   7030篇
  2016年   6356篇
  2015年   8528篇
  2014年   10603篇
  2013年   12854篇
  2012年   14110篇
  2011年   14763篇
  2010年   12826篇
  2009年   12148篇
  2008年   11618篇
  2007年   10820篇
  2006年   10806篇
  2005年   9160篇
  2004年   6281篇
  2003年   5400篇
  2002年   5016篇
  2001年   4499篇
  2000年   3997篇
  1999年   4433篇
  1998年   3627篇
  1997年   3067篇
  1996年   2825篇
  1995年   2328篇
  1994年   1855篇
  1993年   1341篇
  1992年   1104篇
  1991年   806篇
  1990年   584篇
  1989年   496篇
  1988年   373篇
  1987年   256篇
  1986年   204篇
  1985年   130篇
  1984年   118篇
  1983年   86篇
  1982年   85篇
  1981年   69篇
  1980年   66篇
  1979年   34篇
  1978年   27篇
  1977年   27篇
  1976年   27篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Existing experimental results have shown that using a semi-log linear relationship between the permanent volumetric strain and cyclic number underestimates the volumetric deformation of rockfill materials with a large cyclic number, and that the error increases with the confining pressure. The existing permanent deformation models are not suitable for the seismic safety analysis of high dams during strong earthquakes. In this study, a series of large-scale triaxial cyclic loading tests of rockfill materials were performed, and a new permanent deformation model of rockfill materials was developed and validated with three kinds of rockfill materials. The results show that the proposed model can properly reflect the general features of the permanent deformation of rockfill materials. The main features of the model are as follows: (1) relations between the cyclic number and permanent volumetric/shear strain are described by hyperbolic functions, which can avoid underestimating the volumetric deformation occurring during strong earthquakes; (2) the model can capture the effect of the mean effective stress on the permanent volumetric strain, with greater confining pressure correlating to greater permanent volumetric deformation, and the permanent volumetric strain under low confining pressure near the dam crest can be well represented; and (3) the model can reflect the effect of the consolidation stress ratio on the permanent shear strain.  相似文献   
992.
ABSTRACT

The analysis method of Fast Neutron Multiplicity Counting (FNMC) plays an increasingly important role in the measurement of nuclear material properties. Based on the assumption of point model, fast neutron multiplicity measurement equation is derived which can be used to measure the mass of Pu sample. However, the deviation of the simulated measurement of 1 kg Pu sample reaches 16.6% and increases with mass. Because nonpoint source samples of different shapes do not fully satify the hypothesis. To correct this deviation, a set of fast neutron multiplicity counters was built by Geant4 to simulate and study the mass attribute of Pu samples.The cylindrical sources of different shapes and different masses were simulated, the self-multiplication factor and α coefficient were corrected.And the corresponding third-order polynomial fitting equation was obtained, the goodness of fit was greater than 0.970. In the same way, the spherical and spherical shell source samples in the mass range of 0–5 kg were analyzed, the corrected mass deviation of samples was less than 10% in this interval. The results show that the combination of the fast neutron multiplicity counter and parameter correction can accurately measure the sample mass attribute.  相似文献   
993.
采用一种恰当的方法,简便地推导出中子输运方程泄漏项在球坐标系下的表达式,该方法避免直接寻求二面角与中子飞行距离之间的复杂微分关系,转而寻求二面角与其他平面角之间的几何关系,再利用其他平面角与中子飞行距离之间的微分关系(通常是已知的或比较容易推导得到),便可间接推导出中子输运方程泄漏项在球坐标系下的表达式。该方法与传统方法推导得到的表达式完全一致,且推导过程直观、物理图像清晰。   相似文献   
994.
Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications.  相似文献   
995.
As a solid state joining process, ultrasonic spot welding has been proven to be a promising technique for joining copper alloys. However, challenges still remain in employing ultrasonic spot welding to join copper alloys. This article comprehensively reviews the current state of ultrasonic spot welding of copper alloys with a number of critical issues including materials flow, plastic deformation, temperature distribution, vibration, relative motion, vertical displacement, interface friction coefficient, online monitoring technique, coupled with the macrostructure and microstructure, the mechanical properties and electrical conductivity. In addition, the future trends in this field are provided.  相似文献   
996.
Bacterial infection is one of the top ten leading causes of death globally and the worst killer in low-income countries. The overuse of antibiotics leads to ever-increasing antibiotic resistance, posing a severe threat to human health. Recent advances in nanotechnology provide new opportunities to address the challenges in bacterial infection by killing germs without using antibiotics. Antibiotic-free antibacterial strategies enabled by advanced nanomaterials are presented. Nanomaterials are classified on the basis of their mode of action: nanomaterials with intrinsic or light-mediated bactericidal properties and others that serve as vehicles for the delivery of natural antibacterial compounds. Specific attention is given to antibacterial mechanisms and the structure–performance relationship. Practical antibacterial applications employing these antibiotic-free strategies are also introduced. Current challenges in this field and future perspectives are presented to stimulate new technologies and their translation to fight against bacterial infection.  相似文献   
997.
The capability of manipulating the interfacial electronic coupling is the key to achieving on-demand functionalities of catalysts. Herein, it is demonstrated that the electronic coupling of Fe2N can be effectively regulated for hydrogen evolution reaction (HER) catalysis by vacancy-mediated orbital steering. Ex situ refined structural analysis reveals that the electronic and coordination states of Fe2N can be well manipulated by nitrogen vacancies, which impressively exhibit strong correlation with the catalytic activities. Theoretical studies further indicate that the nitrogen vacancy can uniquely steer the orbital orientation of the active sites to tailor the electronic coupling and thus benefit the surface adsorption capability. This work sheds light on the understanding of the catalytic mechanism in real systems and could contribute to revolutionizing the current catalyst design for HER and beyond.  相似文献   
998.
Nanosized materials are known to have the ability to withstand ultralarge elastic strains (4–10%) and to have ultrahigh strengths approaching their theoretical limits. However, it is a long-standing challenge to harnessing their exceptional intrinsic mechanical properties in bulk forms. This is commonly known as “the valley of death” in nanocomposite design. In 2013, a breakthrough was made to overcome this challenge by using a martensitic phase transforming matrix to create a composite in which ultralarge elastic lattice strains up to 6.7% are achieved in Nb nanoribbons embedded in it. This breakthrough was enabled by a novel concept of phase transformation assisted lattice strain matching between the uniform ultralarge elastic strains (4–10%) of nanomaterials and the uniform crystallographic lattice distortion strains (4–10%) of the martensitic phase transformation of the matrix. This novel concept has opened new opportunities for developing materials of exceptional mechanical properties or enhanced functional properties that are not possible before. The work in progress in this research over the past six years is reported.  相似文献   
999.
Calcium-ion batteries (CIBs) are considered to be promising next-generation energy storage systems because of the natural abundance of calcium and the multivalent calcium ions with low redox potential close to that of lithium. However, the practical realization of high-energy and high-power CIBs is elusive owing to the lack of suitable electrodes and the sluggish diffusion of calcium ions in most intercalation hosts. Herein, it is demonstrated that calcium-ion intercalation can be remarkably fast and reversible in natural graphite, constituting the first step toward the realization of high-power calcium electrodes. It is shown that a graphite electrode exhibits an exceptionally high rate capability up to 2 A g−1, delivering ≈75% of the specific capacity at 50 mA g−1 with full calcium intercalation in graphite corresponding to ≈97 mAh g−1. Moreover, the capacity stably maintains over 200 cycles without notable cycle degradation. It is found that the calcium ions are intercalated into graphite galleries with a staging process. The intercalation mechanisms of the “calciated” graphite are elucidated using a suite of techniques including synchrotron in situ X-ray diffraction, nuclear magnetic resonance, and first-principles calculations. The versatile intercalation chemistry of graphite observed here is expected to spur the development of high-power CIBs.  相似文献   
1000.
对锌浸出渣中锌、锗和铁进行高压选择性浸出,采用P204萃取去除浸出液中铁元素,使浸出液中的锌、锗元素得到富集。高压选择性浸出试验结果表明,锌的平均浸出率高达96.77%,锗的平均浸出率高达70.86%,而铁的平均浸出率仅为55.44%。萃取除铁试验表明,经三级萃取后,三价铁离子的萃取率大于99.5%,萃余液中三价铁离子浓度小于0.01 g/L,可循环进入湿法炼锌工艺中使用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号